
ALGEBRAIC CURVES
SOLUTION SHEET 3

Unless otherwise specified, k is an algebraically closed field.

Exercise 3.1.

(1) Show that V (Y − X2) ⊂ A2(C) is irreducible; in fact, I(V (Y − X2)) =
(Y −X2).

(2) Decompose V (Y 4−X2, Y 4−X2Y 2+XY 2−X3) ⊂ A2(C) into irreducible
components.

(3) Show that F = Y 2 +X2(X − 1)2 ∈ R[X, Y ] is an irreducible polynomial,
but V (F ) is reducible.

Solution 1.

(1) If we can show that I := (Y − x2) is prime then both statements follow.
Now I = (Y −X2) is prime because C[X, Y ]/I ≃ C[X] is integral (to see
the isomorphism, consider the map C[X, Y ] → C[X] sending X to X and
Y to X2).

(2) Let V := V (Y 4 −X2, Y 4 −X2Y 2 +XY 2 −X3). We can see that

Y 4 −X2 = (Y 2 +X)(Y 2 −X)

and
Y 4 −X2Y 2 +XY 2 −X3 = (Y 2 +X)(Y 2 −X2)

We see that Y 2 +X is a common irreducible factor so it is an irreducible
component of dimension 1 in V . Indeed, if I := (Y 4 − X2, Y 4 − X2Y 2 +
XY 2−X3), I1 := (Y 2+X) and I2 := (Y 2−X, Y 2−X2), we have I = I1 ·I2
(the RHS is interpreted as the ideal generated by {i1i2 | i1 ∈ I1, i2 ∈ I2}),
so by Exercise 2.3.2 we have V (I) = V (I1)∪ V (I2). By a similar argument
as in part 1, we have that V (I1) is irreducible. As V (I1) ⊊ V (I2) (we have
e.g. (i, 1) ∈ V (I1)\V (I2)), it follows that V (I1) is an irreducible component
of V (I), and as I1 is a height 1 prime ideal in C[X, Y ], it follows that V (I1)
has codimension 1 in A2(C), i.e. it has dimension 1. There are two other
irreducible components given by points (1, 1) and (1,−1) in the intersection
of V (Y 2 −X) and V (Y 2 −X2) = V ((Y −X)(Y +X)). (Note that (0, 0)
is already contained in V (Y 2 +X))

(3) We view F as an element of R[X][Y ]. As F has degree 2 in Y , it is
reducible if and only if there exists p ∈ R[X] such that F (X, p(X)) = 0.
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This is impossible as F (−1, p(−1)) > 0. Alternatively, in C[X, Y ],

F = (Y − iX(X − 1))(Y + iX(X − 1)),

so by unicity of the decomposition in irreducible factors and as i /∈ R, F is
irreducible in R[X, Y ].

However, V (F ) = V (Y ) ∩ V (X(X − 1)) = {(0, 0), (1, 0)}

Exercise 3.2.

(1) Consider the twisted cubic curve C = {(t, t2, t3); t ∈ C} ⊂ A3(C). Show
that C is an irreducible closed subset of A3(C). Find generators for the
ideal I(C).

(2) Let V = V (X2 − Y Z,XZ − X) ⊂ A3(C). Show that V consists of three
irreducible components and determine the corresponding prime ideals.

Solution 2.

(1) The idea is to write C as the image of some morphism and use the fact
that the continuous image of an irreducible topological space is irreducible.
The map

f : A1(C)→ A3(C)
t 7→ (t, t2, t3).

is a morphism of algebraic sets (induced by the C-algebra morphism Φ: C[X, Y, Z]→
C[X] mapping X 7→ X, Y 7→ X2, Z 7→ X3), so in particular it is continu-
ous. Clearly, the image of f is C. If C = F1 ∪ F2, with F1 and F2 Zariski
closed subsets, A1 = f−1(F1) ∪ f−1(F2). A1(C) is Zariski-irreducible so
without lost of generality f−1(F1) = A1(C) but then C = F1. Hence C
is irreducible. Moreover, putting I = (Y − X2, Z − X3), it is straightfor-
ward to see that C = V (I), so C is closed. Finally, as I is prime (because
I = kerΦ and thus C[X, Y, Z]/I ∼= C[X]), we have I(C) = I.

(2) We can decompose

V (X2 − Y Z,XZ −X) = V (X2 − Y Z,X(Z − 1))

= V (X2 − Y Z) ∩ V (X(Z − 1))

= V (X2 − Y Z) ∩ (V (X) ∪ V (Z − 1))

=
(
V (X2 − Y Z) ∩ V (X)

)
∪
(
V (X2 − Y Z) ∩ V (Z − 1)

)
= V (X2 − Y Z,X) ∪ V (X2 − Y Z,Z − 1)

= V (Y Z,X) ∪ V (X2 − Y, Z − 1)

= V (Y,X) ∪ V (Z,X) ∪ V (X2 − Y, Z − 1).
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It is straightforward to see that (Y,X), (Z,X) and (X2−Y, Z−1) are prime
(for the last one, consider the C–algebra morphism C[X, Y, Z] → C[X]
sending X 7→ X, Y 7→ X2 and Z 7→ 1), so the three sets in the above
decomposition are irreducible. As none of these sets is contained in the
union of the other two, we have found the decomposition into irreducible
subsets. In fact, V (Y,X) is the Z-axis, V (Z,X) the Y -axis and V (X2 −
Y, Z − 1) a parabola in the Z = 1 plane.

Exercise 3.3. For topological spaces X and Y , the opens of the product topology
on X × Y are unions of products of opens U × V , where U ⊆ X and V ⊆ Y .
A topological space X is called Hausdorff if for any pair of points x1 ̸= x2 ∈ X,
there exist open subsets U, V ⊆ X such that x1 ∈ U , x2 ∈ V and U ∩ V = ∅. A
topological space G with an abstract group structure is called a topological group
if the multiplication and inverse laws are continuous. Let n ≥ 1.

(1) Is the product topology on A1
k × A1

k (each copy of A1
k being endowed with

the Zariski topology) the same as the Zariski topology on A2
k?

(2) Is the Zariski topology on An
k Hausdorff?

(3) Is (An
k ,+) a topological group for the Zariski topology (assuming An

k×An
k ≃

A2n
k is endowed with the Zariski topology)?

Solution 3.

(1) No. The non-trivial closed subsets of A1
k ×A1

k in the product topology are
precisely the subsets of the form (F1 × A1

k) ∪ (A1
k × F2) for finites subsets

F1, F2 ⊆ A1
k. But for example, V (1−XY ) is a Zariski closed subset in A2

k

but it is not closed in the product topology, as it clearly isn’t of the above
form. V (X − Y ) also works.

(2) No. Since any two non-empty open sets are dense in An
k , their intersection

cannot be empty. Note that this shows that the Zariski topology on A2n
k

doesn’t agree with the product topology on An
k ×An

k : indeed, the diagonal
{(p, p) | p ∈ An

k} is closed in the Zariski topology, but if it were closed for
the product topology then An

k would be Hausdorff, contradiction.
(3) Yes. Since (x, y) 7→ x + y and x 7→ −x are algebraic (i.e. given by

polynomials), it is continuous for the Zariski topology. The corresponding
k–algebra homomorphisms are

k[x1, . . . , xn]→ k[y1, . . . , yn, z1, . . . , zn]

xi 7→ yi + zi,
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resp.

k[x1, . . . , xn]→ k[x1, . . . , xn]

xi 7→ −xi.

Exercise 3.4.

(1) Show that any open subset of an irreducible topological space is irreducible
and dense.

(2) Show that the closure of an irreducible subset of a topological space is
irreducible.

Solution 4. Recall that in general, a topological space S is irreducible if for all
W1, W2 closed in S with S = W1 ∪W2, one has S = W1 or S = W2.

(1) Let U ⊂ F open in F irreducible. Then F = (F \ U) ∪ U so F = F \ U or
F = U , thus U = ∅ or U is dense in F .

It remains to show that U is irreducible. Let W1,W2 be closed in U such
that U = W1 ∪W2. Now U \Wi is open in the open subset U of F , so
U \Wi is open in F . In particular, it is dense or empty. On the other hand,
note that

(U \W1) ∩ (U \W2) = U \ (W1 ∪W2) = ∅.

As a finite intersection of dense-opens is dense open, one of U \W1 and
U \W2 has to be empty, WLOG U \W1 = ∅. That is, U = W1, so we are
done.

(2) Let X be a topological space and let S ⊆ X be irreducible (with the
subspace topology). Suppose that S = F1∪F2 for closed subsets F1, F2 ⊆ S.
Then

S = (S ∩ F1) ∪ (S ∩ F2),

and by irreducibility of assume we WLOG have S∩F1 = S. But this means
S ⊆ F1, and as F1 is closed in S and thus also in X, we obtain S ⊆ F1,
and thus S = F1.

Exercise 3.5. Let V an affine variety. Show that algebraic subsets of V are in
one-to-one correspondence with radical ideals of Γ(V ). Show that under this cor-
respondence, affine subvarieties correspond to prime ideals and points correspond
to maximal ideals.
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Solution 5. We have seen in the lecture this correspondence for V = An
k , given

by

{Algebraic subsets of An
k} ←→ {Radical ideals in k[x1, . . . , xn]}
W 7−→ I(W )

V (J)←− [ J,

where irreducibles correspond to primes and points correspond to maximal ideals.
By definition, the algebraic subsets of V are the algebraic subsets of An

k contained
in V . Hence, if W ⊆ V is an algebraic subset of V , then I(W ) is radical and
I(W ) ⊇ I(V ). On the other hand, if J is radical and J ⊇ I(V ), then we have
V (J) ⊆ V . Therefore, the above correspondence restricts and co-restricts to a
one-to-one correspondence

{Algebraic subsets of V } ←→ {Radical ideals in k[x1, . . . , xn] containing I(V )}
W 7−→ I(W )

V (J)←− [ J,

where again irreducibles correspond to primes and points correspond to maximal
ideals. As we also have a one-to-one correspondence

{ideals in k[x1, . . . , xn] containing I(V )} ←→ {ideals in Γ(V ) := k[x1, . . . , xn]/I(V )}
J 7−→ π(J)

π−1(J)←− [ J,

where π : k[x1, . . . , xn] → Γ(V ) is the projection, and as this correspondence pre-
serves radical, prime and maximal ideals by Rings&Modules, we obtain a one-to-
one correspondence

{Algebraic subsets of V } ←→ {Radical ideals in Γ(V )}
W 7−→ π(I(W ))

V (π−1(J))←− [ J,

whereby irreducibles correspond to primes and points correspond to maximal
ideals.

Remark. Note that the elements of Γ(V ) can be seen as the algebraic functions
V → k, because if f ∈ Γ(V ) is represented by f ∈ k[x1, . . . , xn], then f(p) = g(p)
for all g with g ∈ f + I(V ) and p ∈ V , hence it makes sense to define f(p) := f(p)
for any p ∈ V . For a subset S ⊆ Γ(V ), one can then define

VΓ(V )(S) := {p ∈ V | ∀s ∈ S : s(p) = 0},
and for any subset W ⊆ V , we can define

IΓ(V )(W ) := {f ∈ Γ(V ) | ∀p ∈ W : f(p) = 0}.
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With these definitions, the above correspondence can be written as
{Algebraic subsets of V } ←→ {Radical ideals in Γ(V )}

W 7−→ IΓ(V )(W )

VΓ(V )(J)←− [ J,

in perfect analogy to the case V = An
k .
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